办学质量监测教学评价系统
shenrongliang
2025-06-13 11d86cc6c26bb4f709e407acadf4805c2024e79f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
 
import { gptConfigStore, gptServerStore, homeStore,useAuthStore } from "@/store";
import { mlog,myTrim } from "./mjapi";
import { fetchSSE } from "./sse/fetchsse";
import axios from 'axios';
import { localGet, localSaveAny } from "./mjsave";
import { isNumber, isObject } from "@/utils/is";
import { t } from "@/locales";
import { ChatMessage } from "gpt-tokenizer/esm/GptEncoding";
import { chatSetting } from "./chat";
import { getToken } from '@/store/modules/auth/helper'
 
 
const getUrl=(url:string)=>{
    if(url.indexOf('http')==0) return url;
    if(gptServerStore.myData.OPENAI_API_BASE_URL){
        return `${ gptServerStore.myData.OPENAI_API_BASE_URL}${url}`;
    }
    return `/api${url}`;
}
export const gptGetUrl = getUrl
export const gptFetch=(url:string,data?:any,opt2?:any )=>{
    mlog('gptFetch', url  );
    let headers= {'Content-Type':'application/json','Authorization':'Bearer ' + getToken()}
    if(opt2 && opt2.headers ) headers= opt2.headers;
 
    headers={...headers,...getHeaderAuthorization()}
    return new Promise<any>((resolve, reject) => {
        let opt:RequestInit ={method:'GET'};
        opt.headers= headers ;
        if(opt2?.upFile ){
             opt.method='POST';
             opt.body=data as FormData ;
        }
        else if(data) {
            opt.body= JSON.stringify(data) ;
            opt.method='POST';
        }
        fetch(getUrl(url),  opt )
        .then(d=>d.json().then(d=> resolve(d))
        .catch(e=>reject(e)))
        .catch(e=>reject(e))
    })
 
}
 // 前端直传 cloudflare r2
function uploadR2(file: File) {
    return new Promise<any>((resolve, reject) => {
            //预签名
            axios.post(gptGetUrl("/pre_signed"), { file_name: file.name, content_type: file.type }, {
                    headers: { 'Content-Type': 'application/json' }
            }).then(response => {
                            if (response.data.status == "Success") {
                                    const signedUrl = response.data.data.up;
                                    //上传
                                    fetch(signedUrl, {
                                            method: 'PUT',
                                            body: file,
                                            headers: {
                                                    'Content-Type': file.type,
                                            },
                                    }).then(res2 => {
                                            if (res2.ok) {
                                                    console.log('Upload successful!', response.data.data.url);
                                                    return resolve({ url: response.data.data.url });
                                            } else {
                                                    return reject(res2)
                                            }
                                    }).catch(error => {
                                            return reject(error)
                                    });
 
                            } else {
                                    return reject(response.data);
                            }
                    }
            ).catch(error => reject(error));
    });
}
 
export const GptUploader =   ( _url :string, FormData:FormData )=>{
 
    //R2上传
    const upLoaderR2= ()=>{
        const file = FormData.get('file') as File;
        return uploadR2(file);
    }
 
    //执行上传
    const uploadNomalDo = (url:string, headers:any)=>{
        return new Promise<any>((resolve, reject) => {
                axios.post( url , FormData, {
                headers
            }).then(response =>  resolve(response.data )
            ).catch(error =>reject(error)  );
        })
    }
 
    //除R2外默认流程
    const uploadNomal= (url:string)=>{
        url= gptServerStore.myData.UPLOADER_URL? gptServerStore.myData.UPLOADER_URL :  gptGetUrl( url );
        let headers=   {'Content-Type': 'multipart/form-data' }
        if(gptServerStore.myData.OPENAI_API_BASE_URL && url.indexOf(gptServerStore.myData.OPENAI_API_BASE_URL)>-1  ) {
            headers={...headers,...getHeaderAuthorization()}
 
        }else{
            const authStore = useAuthStore()
            if( authStore.token ) {
                const  header2={ 'x-ptoken':  authStore.token };
                headers= {...headers, ...header2}
            }
        }
        return  uploadNomalDo(url,headers );
 
    }
 
    //处理上传流程
    const uploadType=   ( (homeStore.myData.session.uploadType??'') as string).toLocaleLowerCase() ;
    let headers=   {'Content-Type': 'multipart/form-data' }
    //R2
    if(uploadType=='r2' ){
        return upLoaderR2();
    //容器
    }else if( uploadType=='container' ) {
         const authStore = useAuthStore()
        if( authStore.token ) {
            const  header2={ 'x-ptoken':  authStore.token };
            headers= {...headers, ...header2}
        }
        let url= `/openapi${_url}`
        return  uploadNomalDo(url,headers );
 
    //前端API
    }else if( uploadType=='api' ) {
        headers={...headers,...getHeaderAuthorization()}
        let url= `${ gptServerStore.myData.OPENAI_API_BASE_URL}${_url}`
        return  uploadNomalDo(url,headers );
 
    //自定义链接
    }else if( uploadType=='myurl' ) {
        return  uploadNomalDo(_url,headers );
    }
 
    //默认上传流程
    if(homeStore.myData.session.isUploadR2){
    return upLoaderR2();
    }
    return uploadNomal( _url);
}
 
export const whisperUpload = ( FormData:FormData )=>{
    const url = gptGetUrl('/chat/audio');
    let headers=   {'Content-Type': 'multipart/form-data','Authorization':'Bearer ' + getToken()}
    headers={...headers,...getHeaderAuthorization()}
    return new Promise<any>((resolve, reject) => {
            axios.post( url , FormData, {
            headers
        }).then(response =>  resolve(response.data )
        ).catch(error =>reject(error)  );
    })
}
 
export const subGPT= async (data:any, chat:Chat.Chat )=>{
   let d:any;
   let action= data.action;
   //chat.myid=  `${Date.now()}`;
   if(  action=='gpt.dall-e-3' ){ //执行变化
       // chat.model= 'dall-e-3';
 
       let d= await gptFetch('/dall3', data.data);
       try{
            const rz : any= d.data[0];
            chat.text= rz.revised_prompt??`图片已完成`;
            chat.opt={imageUrl:rz.url } ;
            chat.loading = false;
            homeStore.setMyData({act:'updateChat', actData:chat });
       }catch(e){
            chat.text='失败!'+"\n```json\n"+JSON.stringify(d, null, 2)+"\n```\n";
            chat.loading=false;
            homeStore.setMyData({act:'updateChat', actData:chat });
       }
 
   }
 
}
 
interface subModelType{
    kid: string;
    message:any[]
    onMessage:(d:{text:string,isFinish:boolean})=>void
    onError?:(d?:any)=>void
    signal?:AbortSignal
    model?:string
    uuid?:string|number
    chatType: number
    appId: string
}
function getHeaderAuthorization(){
    // if(!gptServerStore.myData.OPENAI_API_KEY){
    //     const authStore = useAuthStore()
    //     if( authStore.token ) return { 'x-ptoken':  authStore.token };
    //     return {}
    // }
    return {
        'Authorization': 'Bearer ' + getToken()
    }
}
 
export const getSystemMessage = (uuid?:number )=>{
    //KnowledgeCutOffDate
    let sysTem= gptConfigStore.myData.systemMessage;
    if( uuid ){
        const chatS= new chatSetting(uuid);
        sysTem= chatS.getGptConfig().systemMessage ;
    }
    if(  sysTem ) return sysTem;
    let model= gptConfigStore.myData.model;
    let producer= 'Please respond in concise and clear language, prioritizing Chinese.'
    const DEFAULT_SYSTEM_TEMPLATE = `${producer}
    Current model: ${model}
    Current time: ${ new Date().toLocaleString()}`
    return DEFAULT_SYSTEM_TEMPLATE;
 
}
export const subModel= async (opt: subModelType)=>{
 
    const model= opt.model?? ( gptConfigStore.myData.model);
    let max_tokens= gptConfigStore.myData.max_tokens;
    let temperature= 0.5;
    let top_p= 1;
    let presence_penalty= 0 , frequency_penalty=0;
    if(opt.uuid){
        const chatSet= new chatSetting( +opt.uuid);
        const gStore= chatSet.getGptConfig();
        temperature= gStore.temperature??temperature;
        top_p = gStore.top_p??top_p;
        presence_penalty = gStore.presence_penalty??presence_penalty;
        frequency_penalty = gStore.frequency_penalty??frequency_penalty;
        max_tokens= gStore.max_tokens;
    }
    let body ={
            max_tokens ,
            model ,
            temperature,
            top_p,
            presence_penalty ,frequency_penalty,
            "messages": opt.message
           ,stream:true
           ,kid:gptConfigStore.myData.kid
           ,chat_type: opt.chatType
           ,appId: opt.appId
        }
 
        let headers=   {'Content-Type': 'application/json;charset=UTF-8',
                        'Authorization':'Bearer ' + getToken(),
                        'Accept': 'text/event-stream '}
        headers={...headers,...getHeaderAuthorization()}
        try {
            let url = "/chat/send"
         await fetchSSE( gptGetUrl(url),{
            method: 'POST',
            headers: headers,
            signal:opt.signal,
            onMessage: async (data:string)=> {
                 //mlog('🐞测试'  ,  data )  ;
                 if(data=='[DONE]') opt.onMessage({text:'',isFinish:true})
                 else {
                    try{
                        // TODO 思考处理,DeepSeek  API 字段reasoning_content ,本地部署标签<think> 
                        const obj= JSON.parse(data );
                        opt.onMessage({text:obj.choices[0].delta?.content??obj.choices[0].delta?.reasoning_content??'' ,isFinish:obj.choices[0].finish_reason!=null })
                    }catch{
                        opt.onMessage({
                            text: data,
                            isFinish: false
                        });
                    }
 
                 }
            },
            onError(e ){
                //console.log('eee>>', e )
                mlog('❌未错误',e    )
                opt.onError && opt.onError(e)
            },
            body:JSON.stringify(body)
        });
     } catch (error ) {
        mlog('❌未错误2',error  )
        opt.onError && opt.onError(error)
     }
}
 
export const getInitChat = (txt:string )=>{
    let promptMsg: Chat.Chat= {
        dateTime: new Date().toLocaleString(),
        text:  txt ,
        inversion: true,
        error: false,
        conversationOptions: null,
        requestOptions: { prompt:txt, options: null },
        }
        return promptMsg;
}
 
export interface ttsType{
        model: string,
        input: string ,
        voice?: string,
 
}
export const subTTS = async (tts:ttsType )=>{
    if(!tts.voice) tts.voice='alloy';
    let url= getUrl('/chat/speech');
    let headers=  {
        'Content-Type': 'application/json'
      }
    headers={...headers,...getHeaderAuthorization()}
    const response = await fetch(url, {
      method: 'POST',
      headers,
      body: JSON.stringify(tts),
    });
 
    if (!response.ok) {
      throw new Error(`API request failed with status ${response.status}`);
    }
    const audioData = await response.arrayBuffer();
    const contentType = response.headers.get('Content-Type')
    const blob = new Blob([audioData], { type: contentType??'audio/mpeg' });
    mlog('blob', blob);
    const saveID = await localSaveAny( blob );
    const pp= await bolbObj(blob );
    return { blob,saveID ,...pp };
 
}
 
export const bolbObj= ( blob:Blob )=>{
    return new Promise<{player:HTMLAudioElement,duration:number }>((resolve, reject) => {
        const player = new window.Audio();
        player.src = URL.createObjectURL(blob);
 
        player.addEventListener('loadedmetadata', () => {
            mlog('时长', player.duration);
            resolve({player,duration: player.duration });
        });
        player.addEventListener('error',(e )=>{
            reject(e )
        })
        player.load();
    })
 
}
 
function formatDate(): string[] {
  const today = new Date()
  const year = today.getFullYear()
  const month = today.getMonth() + 1
  const lastDay = new Date(year, month, 0)
  const formattedFirstDay = `${year}-${month.toString().padStart(2, '0')}-01`
  const formattedLastDay = `${year}-${month.toString().padStart(2, '0')}-${lastDay.getDate().toString().padStart(2, '0')}`
  return [formattedFirstDay, formattedLastDay]
}
 
//
 
export const  gptUsage=async ()=>{
 
    // fetch(getUrl(url),  opt )
    //     .then(d=>d.json().then(d=> resolve(d))
    //     .catch(e=>reject(e)))
    //     .catch(e=>reject(e))
    const [startDate, endDate] = formatDate();
    const urlUsage = `/v1/dashboard/billing/usage?start_date=${startDate}&end_date=${endDate}`
    const usageData = await gptFetch(urlUsage);
    const billData = await gptFetch('/v1/dashboard/billing/subscription');
 
    const usage = Math.round(usageData.total_usage) / 100
     mlog('gpt', usage , billData  );
     //remaining = subscriptionData.system_hard_limit_usd - totalUsage;
     return {usage,remaining:Math.round( (billData.hard_limit??billData.hard_limit_usd*100) - usageData.total_usage ) / 100 ,hard_limit_usd:billData.hard_limit_usd } ;
 
}
 
export const openaiSetting= ( q:any )=>{
    //mlog()
    mlog('setting', q )
    if(q.settings){
        mlog('q.setting', q.settings )
        try {
            let obj = JSON.parse( q.settings );
            const url = obj.url ?? undefined;
            const key = obj.key ?? undefined;
            //let setQ= { }
            gptServerStore.setMyData(  {OPENAI_API_BASE_URL:url, MJ_SERVER:url, OPENAI_API_KEY:key,MJ_API_SECRET:key } )
            blurClean();
            gptServerStore.setMyData( gptServerStore.myData );
 
        } catch (error) {
 
        }
    }
    else if(isObject(q)){
        mlog('setting2', q )
        gptServerStore.setMyData(  q )
        //gptServerStore.setMyData( gptServerStore.myData );
        blurClean();
        gptServerStore.setMyData( gptServerStore.myData );
 
    }
 
}
export const blurClean= ()=>{
  mlog('blurClean');
  gptServerStore.myData.OPENAI_API_BASE_URL =myTrim( myTrim(gptServerStore.myData.OPENAI_API_BASE_URL.trim(),'/'), '\\' );
  gptServerStore.myData.OPENAI_API_KEY = gptServerStore.myData.OPENAI_API_KEY.trim();
  gptServerStore.myData.MJ_SERVER =myTrim( myTrim( gptServerStore.myData.MJ_SERVER.trim(),'/'),'\\');
  gptServerStore.myData.MJ_API_SECRET = gptServerStore.myData.MJ_API_SECRET.trim();
  gptServerStore.myData.UPLOADER_URL=  myTrim( myTrim( gptServerStore.myData.UPLOADER_URL.trim(),'/'),'\\');
}
 
export const countTokens= async ( dataSources:Chat.Chat[], input:string ,uuid:number )=>{
    const chatSet= new chatSetting(uuid);
    const myStore= chatSet.getGptConfig();
    let rz={system:0,input:0 ,history:0,remain:330,modelTokens:'4k',planOuter:myStore.max_tokens  }
    const model =myStore.model;
    const max= getModelMax(model );
    let unit= 1024;
    rz.modelTokens= `${max}k`
    //cl100k_base.encode(input)
 
    const encode= await encodeAsync();
    rz.input = encode(input).length;
    rz.system = encode(getSystemMessage() ).length;
    const encodeChat = await encodeChatAsync();
    const msg= await getHistoryMessage(  dataSources,1 ) ;
    rz.history= msg.length==0?0: encodeChat(msg, model.indexOf('gpt-4')>-1? 'gpt-4':'gpt-3.5-turbo').length
    //
    rz.remain = unit *max- rz.history- rz.planOuter- rz.input- rz.system;
 
    return rz ;
}
const getModelMax=( model:string )=>{
    let max=4;
    model= model.toLowerCase();
    if( model.indexOf('8k')>-1  ){
        return 8;
    }else if( model.indexOf('16k')>-1 || model=='gpt-3.5-turbo-1106' || model=='gpt-3.5-turbo-0125' ){
        return 16;
    }else if( model.indexOf('32k')>-1  ){
        return 32;
    }else if( model.indexOf('64k')>-1  ){
        return 64;
    }else if( model.indexOf('128k')>-1
    || model=='gpt-4-1106-preview'
    || model=='gpt-4-0125-preview'){
        return 128;
    }else if( model.indexOf('gpt-4')>-1  ){
        max=8;
    }else if( model.toLowerCase().includes('claude-3') ){
        //options.maxModelTokens = 120*1024;
        //options.maxResponseTokens = 4096
        return 120;
    }
 
    return max;
}
 
export const encodeAsync = async ( ) => {
  const { encode } = await import('gpt-tokenizer');
 
  return encode;//(str).length;
};
export const encodeChatAsync = async ( ) => {
  const { encodeChat } = await import('gpt-tokenizer');
 
  return encodeChat;//(obj,model ).length;
};
 
 
export const getHistoryMessage= async (dataSources:Chat.Chat[],loadingCnt=1 ,start=1000)=>{
    let i=0;
    let rz: ChatMessage[] = [];
    //const loadingCnt= 1;// 1就是没有loading,3 就是有loading
    let istart = (isNumber( start)&& start>=0 )? Math.min(start  ,   dataSources.length - loadingCnt ):  dataSources.length- loadingCnt  ;
    mlog('istart',istart, start);
    for( let ii=  istart  ; ii>=0 ; ii-- ){ //let o of dataSources.value
        if(i>=gptConfigStore.myData.talkCount) break;
        i++;
 
        let o = dataSources[ii];
        //mlog('o',ii ,o);
        let content= o.text;
        if( o.inversion && o.opt?.images && o.opt.images.length>0 ){
            //获取附件信息 比如 图片 文件等
            try{
               let str =  await localGet(  o.opt.images[0]) as string;
               let fileBase64= JSON.parse(str) as string[];
               let arr =  fileBase64.filter( (ff:string)=>ff.indexOf('http')>-1);
               if(arr.length>0) content = arr.join(' ')+' '+ content ;
 
               mlog(t('mjchat.attr') ,o.opt.images[0] , content );
            }catch(ee){
            }
        }
 
        //mlog('d',gptConfigStore.myData.talkCount ,i ,o.inversion , o.text);
        rz.push({content , role: !o.inversion ? 'assistant' : 'user'});
    }
    rz.reverse();
    mlog('rz',rz);
    return rz ;
}