package org.ruoyi.chat.service.chat.impl; import cn.dev33.satoken.stp.StpUtil; import cn.hutool.core.collection.CollectionUtil; import com.fasterxml.jackson.databind.ObjectMapper; import com.google.protobuf.ServiceException; import com.zhipu.oapi.ClientV4; import com.zhipu.oapi.service.v4.tools.*; import io.github.ollama4j.OllamaAPI; import io.github.ollama4j.models.chat.OllamaChatMessage; import io.github.ollama4j.models.chat.OllamaChatMessageRole; import io.github.ollama4j.models.chat.OllamaChatRequestBuilder; import io.github.ollama4j.models.chat.OllamaChatRequestModel; import io.github.ollama4j.models.generate.OllamaStreamHandler; import jakarta.servlet.http.HttpServletRequest; import lombok.RequiredArgsConstructor; import lombok.extern.slf4j.Slf4j; import okhttp3.*; import org.ruoyi.chat.config.ChatConfig; import org.ruoyi.chat.listener.SSEEventSourceListener; import org.ruoyi.chat.service.chat.IChatCostService; import org.ruoyi.chat.service.chat.ISseService; import org.ruoyi.chat.util.IpUtil; import org.ruoyi.common.chat.request.ChatRequest; import org.ruoyi.common.chat.entity.Tts.TextToSpeech; import org.ruoyi.common.chat.entity.chat.ChatCompletion; import org.ruoyi.common.chat.entity.chat.ChatCompletionResponse; import org.ruoyi.common.chat.entity.chat.Message; import org.ruoyi.common.chat.entity.files.UploadFileResponse; import org.ruoyi.common.chat.entity.whisper.WhisperResponse; import org.ruoyi.common.chat.openai.OpenAiStreamClient; import org.ruoyi.common.core.service.ConfigService; import org.ruoyi.common.core.utils.StringUtils; import org.ruoyi.common.core.utils.file.FileUtils; import org.ruoyi.common.core.utils.file.MimeTypeUtils; import org.ruoyi.common.redis.utils.RedisUtils; import org.ruoyi.domain.vo.ChatModelVo; import org.ruoyi.service.EmbeddingService; import org.ruoyi.service.IChatModelService; import org.ruoyi.service.VectorStoreService; import org.springframework.core.io.InputStreamResource; import org.springframework.core.io.Resource; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.stereotype.Service; import org.springframework.web.multipart.MultipartFile; import org.springframework.web.servlet.mvc.method.annotation.SseEmitter; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.nio.file.Files; import java.nio.file.Path; import java.time.Duration; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.concurrent.CompletableFuture; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicBoolean; import java.util.concurrent.atomic.AtomicReference; @Service @Slf4j @RequiredArgsConstructor public class SseServiceImpl implements ISseService { private final OpenAiStreamClient openAiStreamClient; private final ChatConfig chatConfig; private final IChatModelService chatModelService; private final EmbeddingService embeddingService; private final VectorStoreService vectorStore; private final ConfigService configService; private final IChatCostService chatCostService; private static final String requestIdTemplate = "company-%d"; private static final ObjectMapper mapper = new ObjectMapper(); @Override public SseEmitter sseChat(ChatRequest chatRequest, HttpServletRequest request) { SseEmitter sseEmitter = new SseEmitter(0L); SSEEventSourceListener openAIEventSourceListener = new SSEEventSourceListener(sseEmitter); // 获取对话消息列表 List messages = chatRequest.getMessages(); try { // 查询模型信息 ChatModelVo chatModelVo = chatModelService.selectModelByName(chatRequest.getModel()); OpenAiStreamClient openAiModelStreamClient; if(chatModelVo!=null){ // 建请求客户端 openAiModelStreamClient = chatConfig.createOpenAiStreamClient(chatModelVo.getApiHost(), chatModelVo.getApiKey()); // 设置默认提示词 chatRequest.setSysPrompt(chatModelVo.getSystemPrompt()); }else { // 使用默认客户端 openAiModelStreamClient = openAiStreamClient; } // 构建消息列表增加联网、知识库等内容 buildChatMessageList(chatRequest); // 根据模型名称前缀调用不同的处理逻辑 switchModelAndHandle(chatRequest); // 未登录用户限制对话次数 if (!StpUtil.isLogin()) { String clientIp = IpUtil.getClientIp(request); // 访客每天默认只能对话5次 int timeWindowInSeconds = 5; String redisKey = "clientIp:" + clientIp; int count = 0; if (RedisUtils.getCacheObject(redisKey) == null) { // 缓存有效时间1天 RedisUtils.setCacheObject(redisKey, count, Duration.ofSeconds(86400)); }else { count = RedisUtils.getCacheObject(redisKey); if (count >= timeWindowInSeconds) { throw new ServiceException("当日免费次数已用完"); } count++; RedisUtils.setCacheObject(redisKey, count); } } ChatCompletion completion = ChatCompletion .builder() .messages(messages) .model(chatRequest.getModel()) .stream(chatRequest.getStream()) .build(); openAiModelStreamClient.streamChatCompletion(completion, openAIEventSourceListener); // 保存消息记录 并扣除费用 chatCostService.deductToken(chatRequest); } catch (Exception e) { String message = e.getMessage(); sendErrorEvent(sseEmitter, message); return sseEmitter; } return sseEmitter; } /** * 根据模型名称前缀调用不同的处理逻辑 */ private void switchModelAndHandle(ChatRequest chatRequest) { String model = chatRequest.getModel(); // 如果模型名称以ollama开头,则调用ollama中部署的本地模型 if (model.startsWith("ollama-")) { String[] parts = chatRequest.getModel().split("ollama-", 2); // 限制分割次数为2 if (parts.length > 1) { chatRequest.setModel(parts[1]); ollamaChat(chatRequest); } else { throw new IllegalArgumentException("Invalid ollama model name: " + chatRequest.getModel()); } } else if (model.startsWith("gpt-4-gizmo")) { chatRequest.setModel("gpt-4-gizmo"); } } /** * 构建消息列表 */ private void buildChatMessageList(ChatRequest chatRequest){ // 获取对话消息列表 List messages = chatRequest.getMessages(); // 设置系统默认提示词 Message sysMessage = Message.builder().content(chatRequest.getSysPrompt()).role(Message.Role.SYSTEM).build(); messages.add(0,sysMessage); // 查询向量库相关信息加入到上下文 if(chatRequest.getKid()!=null){ List knMessages = new ArrayList<>(); String content = messages.get(messages.size() - 1).getContent().toString(); List nearestList; List queryVector = embeddingService.getQueryVector(content, chatRequest.getKid()); nearestList = vectorStore.nearest(queryVector, chatRequest.getKid()); for (String prompt : nearestList) { Message userMessage = Message.builder().content(prompt).role(Message.Role.USER).build(); knMessages.add(userMessage); } Message userMessage = Message.builder().content(content + (!nearestList.isEmpty() ? "\n\n注意:回答问题时,须严格根据我给你的系统上下文内容原文进行回答,请不要自己发挥,回答时保持原来文本的段落层级" : "")).role(Message.Role.USER).build(); knMessages.add(userMessage); messages.addAll(knMessages); } // 用户对话内容 String chatString = null; // 获取用户对话信息 Object content = messages.get(messages.size() - 1).getContent(); if (content instanceof List listContent) { if (CollectionUtil.isNotEmpty(listContent)) { chatString = listContent.get(0).toString(); } } else if (content instanceof String) { chatString = (String) content; } // 设置对话信息 chatRequest.setPrompt(chatString); // 加载联网信息 if(chatRequest.getSearch()){ Message message = Message.builder().role(Message.Role.ASSISTANT).content("联网信息:"+webSearch(chatString)).build(); messages.add(message); } } /** * 发送SSE错误事件的封装方法 * * @param sseEmitter * @param errorMessage */ private void sendErrorEvent(SseEmitter sseEmitter, String errorMessage) { SseEmitter.SseEventBuilder event = SseEmitter.event() .name("error") .data(errorMessage); try { sseEmitter.send(event); } catch (IOException e) { log.error("SSE发送失败: {}", e.getMessage()); } sseEmitter.complete(); } /** * 文字转语音 */ @Override public ResponseEntity textToSpeed(TextToSpeech textToSpeech) { ResponseBody body = openAiStreamClient.textToSpeech(textToSpeech); if (body != null) { // 将ResponseBody转换为InputStreamResource InputStreamResource resource = new InputStreamResource(body.byteStream()); // 创建并返回ResponseEntity return ResponseEntity.ok() .contentType(MediaType.parseMediaType("audio/mpeg")) .body(resource); } else { // 如果ResponseBody为空,返回404状态码 return ResponseEntity.notFound().build(); } } /** * 语音转文字 */ @Override public WhisperResponse speechToTextTranscriptionsV2(MultipartFile file) { // 确保文件不为空 if (file.isEmpty()) { throw new IllegalStateException("Cannot convert an empty MultipartFile"); } if (!FileUtils.isValidFileExtention(file, MimeTypeUtils.AUDIO__EXTENSION)) { throw new IllegalStateException("File Extention not supported"); } // 创建一个文件对象 File fileA = new File(System.getProperty("java.io.tmpdir") + File.separator + file.getOriginalFilename()); try { // 将 MultipartFile 的内容写入文件 file.transferTo(fileA); } catch (IOException e) { throw new RuntimeException("Failed to convert MultipartFile to File", e); } return openAiStreamClient.speechToTextTranscriptions(fileA); } @Override public UploadFileResponse upload(MultipartFile file) { if (file.isEmpty()) { throw new IllegalStateException("Cannot upload an empty MultipartFile"); } if (!FileUtils.isValidFileExtention(file, MimeTypeUtils.DEFAULT_ALLOWED_EXTENSION)) { throw new IllegalStateException("File Extention not supported"); } return openAiStreamClient.uploadFile("fine-tune", convertMultiPartToFile(file)); } private File convertMultiPartToFile(MultipartFile multipartFile) { File file = null; try { // 获取原始文件名 String originalFileName = multipartFile.getOriginalFilename(); // 默认扩展名 String extension = ".tmp"; // 尝试从原始文件名中获取扩展名 if (originalFileName != null && originalFileName.contains(".")) { extension = originalFileName.substring(originalFileName.lastIndexOf(".")); } // 使用原始文件的扩展名创建临时文件 Path tempFile = Files.createTempFile(null, extension); file = tempFile.toFile(); // 将MultipartFile的内容写入文件 try (InputStream inputStream = multipartFile.getInputStream(); FileOutputStream outputStream = new FileOutputStream(file)) { int read; byte[] bytes = new byte[1024]; while ((read = inputStream.read(bytes)) != -1) { outputStream.write(bytes, 0, read); } } catch (IOException e) { // 处理文件写入异常 e.printStackTrace(); } } catch (IOException e) { // 处理临时文件创建异常 e.printStackTrace(); } return file; } @Override public SseEmitter ollamaChat(ChatRequest chatRequest) { ChatModelVo chatModelVo = chatModelService.selectModelByName(chatRequest.getModel()); final SseEmitter emitter = new SseEmitter(); String host = chatModelVo.getApiHost(); List msgList = chatRequest.getMessages(); List messages = new ArrayList<>(); for (Message message : msgList) { OllamaChatMessage ollamaChatMessage = new OllamaChatMessage(); ollamaChatMessage.setRole(OllamaChatMessageRole.USER); ollamaChatMessage.setContent(message.getContent().toString()); messages.add(ollamaChatMessage); } OllamaAPI api = new OllamaAPI(host); api.setRequestTimeoutSeconds(100); OllamaChatRequestBuilder builder = OllamaChatRequestBuilder.getInstance(chatRequest.getModel()); OllamaChatRequestModel requestModel = builder .withMessages(messages) .build(); // 异步执行 OllAma API 调用 CompletableFuture.runAsync(() -> { try { StringBuilder response = new StringBuilder(); OllamaStreamHandler streamHandler = (s) -> { String substr = s.substring(response.length()); response.append(substr); System.out.println(substr); try { emitter.send(substr); } catch (IOException e) { sendErrorEvent(emitter, e.getMessage()); } }; api.chat(requestModel, streamHandler); emitter.complete(); } catch (Exception e) { sendErrorEvent(emitter, e.getMessage()); } }); return emitter; } @Override public String wxCpChat(String prompt) { List messageList = new ArrayList<>(); Message message = Message.builder().role(Message.Role.USER).content(prompt).build(); messageList.add(message); ChatCompletion chatCompletion = ChatCompletion .builder() .messages(messageList) .model("gpt-4o-mini") .stream(false) .build(); ChatCompletionResponse chatCompletionResponse = openAiStreamClient.chatCompletion(chatCompletion); return chatCompletionResponse.getChoices().get(0).getMessage().getContent().toString(); } @Override public String webSearch (String prompt) { String zpValue = configService.getConfigValue("zhipu", "key"); if(StringUtils.isEmpty(zpValue)){ throw new IllegalStateException("请在chat_config中配置智谱key信息"); }else { ClientV4 client = new ClientV4.Builder(zpValue) .networkConfig(300, 100, 100, 100, TimeUnit.SECONDS) .connectionPool(new okhttp3.ConnectionPool(8, 1, TimeUnit.SECONDS)) .build(); SearchChatMessage jsonNodes = new SearchChatMessage(); jsonNodes.setRole(Message.Role.USER.getName()); jsonNodes.setContent(prompt); String requestId = String.format(requestIdTemplate, System.currentTimeMillis()); WebSearchParamsRequest chatCompletionRequest = WebSearchParamsRequest.builder() .model("web-search-pro") .stream(Boolean.TRUE) .messages(Collections.singletonList(jsonNodes)) .requestId(requestId) .build(); WebSearchApiResponse webSearchApiResponse = client.webSearchProStreamingInvoke(chatCompletionRequest); List choices = new ArrayList<>(); if (webSearchApiResponse.isSuccess()) { AtomicBoolean isFirst = new AtomicBoolean(true); AtomicReference lastAccumulator = new AtomicReference<>(); webSearchApiResponse.getFlowable().map(result -> result) .doOnNext(accumulator -> { { if (isFirst.getAndSet(false)) { log.info("Response: "); } ChoiceDelta delta = accumulator.getChoices().get(0).getDelta(); if (delta != null && delta.getToolCalls() != null) { log.info("tool_calls: {}", mapper.writeValueAsString(delta.getToolCalls())); } choices.add(delta); } }) .doOnComplete(() -> System.out.println("Stream completed.")) .doOnError(throwable -> System.err.println("Error: " + throwable)) .blockingSubscribe(); WebSearchPro chatMessageAccumulator = lastAccumulator.get(); webSearchApiResponse.setFlowable(null); webSearchApiResponse.setData(chatMessageAccumulator); } return choices.get(1).getToolCalls().toString(); } } }